
Performance Evaluation for Distributed System Components

Petre DINI, Gregor v. BOCHMANN, Raouf BOUTABA

University of Montreal. CP 61 28. Succ CENTRE-VILE
Computer Science and Operation Kesearch Department
Montreal, (Qc). H3C 357, Canath

Computer Research Institute uf Montreal
1801. McGlll College rtreet, #800
Montreal. (Qc), H3A 2N4

Abstract
The performunce evciluution of hurdwtrre und sofmure

sysrerri components is bused on stutistics [hut ure long
views on the behuvior of thesc components. Since system
rrsoirrccs muy huve unexpected behuvior, relrvunt cur-
r rn t infiormution becomes iuefid in thr riiunu~ernent proc-
ess 1 4 tliese systcnrs, esptJciully for &tu ~yczrhering:,
rrc~onfigitrcition. und fuult deteciion trclivities. Ac~ticully,
ihcrr uri’ ,fcw criteriu to properly evulirrrtr the currmt
crvciiluhility of componi~nt servici.s within distributed s]vs-
tcrns. Hence, the nu~nugement systc’rn run not reulisticully
sclect thi’ rnost suitubie decision fiir reconjigurution. In
this puper, we present U proposul f o r U continuous evalu-
ution of rwnponcnt behuviour reluted to slute chunges.
This rriotic2l is further extendd by considering different
cutiigories (If events concerning the degrudution of the
oprrutionul stute or usuge stuce. Our proposuls ure bused
on r h ~ possibility of computing ut the component level,
thc. current uvuilubility of this component by continuous
c~val~iutictn. Wc. introduce severu! ciirrmt uvuilubility feu-
titres unci ~)rfo~)(ost~~orrriulil to compuie thi>nl. Other evmts
conrcJrnin,q ti rntmuged object urc c~luss~j7ed us wuming,
i ,r it icxl or outstunding, which l ~ u d s to U nuire uc‘curute
rtpclrutionui v i m on (1 corriponent. .S’evi~rtil counter-bused
c’vc’nts iire thresholdeti t o improve predictczble reconfigu-
rution decisions roncc.rnin,q the mubility of a component.
The rriuin goul is to offer to the munugement system cur-
t - m l relcwunf informution which cun be used within mun-
ugrrnent policies. These policies could refer to the
enhuncmzent of the truding-bused system services, the
jleniblr polling freqwncy tuned with respect to the cur-
rent evuluution, or purticulur uspects reluted to dynumic
tests within distributed systems. Implernentution issues
with ri>spect t o the stundurd ri~commencimtions within dis-
~ r i b ~ i t ~ i t systems ure presented. Finully we describe how
the rcJconfigurution munugement sysrerri cun use these
fcwtures in order to monitor, predict, improve the existing
c,onjigurution, or uccommodute the poiiing frequency uc-
cording to scverul simple criteria

Keywords: current uvuilubility, component heulth,
uciuptive reconjiguru tion

0-8786-7442-3/96 $5.00 0 1996 IEEE

1: Introduction

In the object-oriented approach, system resources
are represented by objects portraying many behavioural
facets. Commiinly. two distinct specifications ci f the he-
havior of a resource co-exist. ()ne specification describes
the operational behavior o f a resource. i.e. what it does in-
dependently of m y management. its own functionality:
the TCPfiP prr)tocul, moclein hehavior. briclge’s cipera-
tions. The other specification defines how a resource cnn
be managed in correlation with the operational behavior,
i.e. its management behavior. It constitutes the managed
object definition. that must be written in accordance with
the information structure of the MIR (Management Infor-
mation Base). A management system is an application
which consists of specialized managing objects playing
different management roles, such as monitoring, fault de-
tection, or reconfiguration. These roles are fulfilled based
on the information they collect across management oper-
ations on managed objects, by interpreting the results of
these operations that come back. In the pro-active man-
agement approach, the collection of information is initiat-
ed by managing objects. Often. real resources hehave
unexpectedly. When a relevant event happens to o r in the
resource. its appropriate managed object Inay spontane-
ously generate notifications. Consequently, the managing
objects interpret not only the operation results, but also
object notifications. To allow this interaction between
managing and managed objects, management operations
and notifications are two important features which must
be defined by the management specification. Manage-
ment operations constitute the management interface of a
managed object. In object-oriented system specificaticins,
a managed object is an instance cif a type. Consequently,
a type definition must be documented with visible prop-
erties, favouring the interaction o f its instances with the
management system. These properties are represented by
1) state attributes which represent the operational, usage
or administrative state of the concerned resource, 2) man-
agement operations, that can affect either the managed
object attributes, at the instance level, or the managed oh-
ject as a whole, 3) matching rules to apply the CMIP fil-
ters [4], 4) management behavior, according to the func-

20

tional behavior of resources, 5) notifications and circum-
stances to emit them, 6) specific packages, as well as its
position in the inheritance hierarchy [ISO/IEC 1016.5-41.
I n this paper, we are concerned with the use of state
changes ‘and notifications to evaluate the performance of
a system component, which becomes relevant in self-re-
configurable distributed systems.

One of the more challenging problems associated
with distributed systems is the subject of system manage-
ment. Monitoring the functionality of complex distribut-
ed systems implies vaious specific munugement
uctiviticis with respect to resource allocation, dynamic
system changes, and evaluation of these changes in order
t o offer the QoS (Quality of Service) desired by the users.
In small systems, management activities are performed
either internally, by network operating systems, or exter-
nally, in an ad hoc manner, by the system operator. Since
dynamic prescribed changes or unexpected component
behaviors, due to either users or the resource availability,
are often possible within distributed systems, manage-
ment aspects have became increasingly complex. The
system operator must correlate its reconfiguration actions
with respect to dynamic changes occumng in a system.
Since within large computer systems the human operator
is c.)verwhelmed by various conflicting situations, man-
agement systems gradually overtake most human opera-
tc)rs ’ tasks.

Since dynamic properties allow an active manage-
ment, we focus in this paper on state changes and notifi-
cations. The main purpose of this paper is to propose a
dynamic quantitative evaluation of a system component
behavior. which may be considered in automatic recon-
figuration policies. The goal is to offer to the manage-
ment system current relevant information, which can be
used within management policies implemented as the op-
erational behavior of managing objects. Our proposal is
based on the possibility of computing, across a managed
object, the current availability of the resource it repre-
sents by a continuous evaluation. A model of the current
trvuilubility is presented. We introduce several current
availability features of a managed object, and propose
formula for computing them. Other events concerning the
uperational state of a managed object are classified as
wurning, criticul or outstunding, which leads to a more
accurate operational view on a component, i.e. different
alarms concerning the operational state are classified with
respect to their relevance. A combination of these two
concepts allows us to define the health of a managed ob-
ject. For those managed objects portraying a maximum
capability, the capability range is thresholded between
idle and busy, to accurately capture the loading. Conse-
quently, several counter-based events concerning the us-
age state are evaluated with respect to threshold and
thershold2, which lead to a warning c)r critical usage
state. We define the relation is-better-than, that creates an
ordering between system components offering an identi-

cal or similar service. Rased on our model, several moni-
toring and reconfiguration policies are described, as well
as particularities for implementing them.

The outline of this paper is the following. Shortcorn-
ings of related work are presented in Section 2. In Section
3, we introduce the models for the performance evalua-
tion: the current availability and its derived features. Sec-
tion 4 presents monitoring and reconfiguration policies
based on our models: how these new properties can be
used by the management system in order to solve current
allocation or monitoring problems. Section 5 presents the
implementation experience of our proposal related to ti-
mestamps in areal system. Section 6 focuses on the utility
of this proposal, while Section 7 gives some conclusions
on our proposal and future work.

2: Related work
2.1: States, actions, and state changes

Different classes of managed objects have a variety
of stute attributes. Achange of at least one state attribute
value determines a state change for the concerned ccim-
ponent. A state change requires an uction to be fired for
modifying an attribute value. This action could be either
internul to a managed object (event), or externul, issued
from the managing system (command). Consequently, a
managed object representing a real resource provides
two kinds of state attributes. The first category refers to
the attributes whose values are updated by the resource
itself in order to correctly present its operutionulSture
(enubled, disubfed). A refinement of the operational state
enabled can be specified by another state attribute called
usageState (idle, active, busy). By interpreting these val-
ues, the managing system may either apply policies
within the subsystem with respect to the state of one par-
ticular component, or decide to directly read across an
administrative state attribute of this component, by
means of commands. Commands act on the second cate-
gory of state attributes, that is, attributes whose values
are managed by the managing system. For instance, the
value space (locked, shutting down, unlocked} of the
udministrutiveStute attribute is modified only by the
managing objects.

Stute chunge aspects within distributed systems are
important, since they are the basis for building manage-
ment policies. Since state combinations leads to a com-
plex management task, the state change munugement
considering all component parameters is difficult to be
performed. Hence, the managing system needs a unique
criterion to evaluate and decide actions in response to
state changes. In many situations, the resource allocation
is based on human decisions in an ad hoc manner, and
thus, it takes no advantages from an optimal and automat-
ic process. More current information is needed o n state

changes with respect to internal actions, which realistical-
ly characterize current changes at the component level.

21

Despite several global approaches, the evaluation o f the
quality o f the operational state using an unique criterion
is currently bused on statistics. In the following. we pro-
pose u continiuus evuluution of stute chunges, based on
the possibilities of measurement within distributed sys-
tems.

2.2: Performance evaluation

Reliubility. muinruinubility, and rrvuilubility are ma-
jor topics with respect t o the utilization o f a software and
hardware component. In order t o cope with state change
issues, many funndaniental performance rnodels based on
state spaces, and taking into account these concepts have
been proposed [1][2][l o] [11][1211 13][161. The uvuilubil-
ity represents the probability that a system is uble to work
at any time during a given period. All studies consider
that a component continuously alternates from the opera-
tional state entrbled to the repair state tfisubled [2][101.
Actual studies are entirely based o n probabilistic up-
prouchcs, where appropriate density functions stutisticul-
l y upprtximutP the component availability. The case of
operutionui interruptions withoiir rtJpuir is less studied,
although i t is quite common within distributed systems.
since it implies a continuous nlcwsure. However, even if
a measure is continuously performed. the instant of a fad-
ure cannot be predicted, and statistic values serve only as
a relative comparison [lo] . Pag6.s and Gondran have in-
troduced the instuntuneowfuilure rule and instuntuneow
rcJptair rut(> for a system, but their calculi use statistics
laws, and only a munuuf melhod for solving small sys-
tems is proposed [121.

2.3: Continuous measurements

The problems are: 1) what must be represented as rel-
evant information within a managed object, and 2) how
this information could be accurately interpreted by the
managing object?. The first question is answered hy ex-
isting standard recommendations. A first proposal for the
standardization of state attributes of managed objects is
given in [IS0/10164-2]. Two attributes define internal
component states, i.e. governed by internal events, name-
ly opercltionulS[cxte and McugeStutP, whereas the udminis-
trutiveStute attribute allows management commands
(external events). Based o n space values of these at-
tributes, several critical combinations are identified as
relevant for the managing objects. A special record class,
called stuteChungeEventCluss, is proposed in order to
record state changes or other relevant counter-based. or
type-based events. Rased on this model. we can compute
several continuous parameters in order to evaluate the
current availability o f ii u)mponent. regardless statistics
laws.

To answer the second question, there are some diffi-

culties related to the complexity of calculi. However, the
values of previous parameters can be entirely computed,
based on the stute nudel proposed by standards. Conse-
quently, the managing system has neither a unique crite-
rion to evaluate and decide actions in response t o stuw
changes, nor to globally evaluate the state of many cciop-
erating components with respect t o the type of their rela-
tions at a given moment. As a result, the transparency of
management decisions is difficult to be achieved, guaran-
teed o r improved.

Also. the lack o f the pertinent computable informa-
tion at the component level does not allow us to infer pre-
dictive management decisiuns with respect to the
component behaviour. Moreover, when changes within
system reconfigurations occur due t o relation changes cir
component changes, the management system can neither
evaluate the degree of the enhancement of services, nor
detect critical areas with respect to a degradation of offer-
ing these services. Since there are no criteria to properly
evaluate the current availability o f services within a DS
(Distributed System), the management system can not re-
alistically select the most suitable solution.

3: Model for the performance evaluation

Our proposal concerns three related facets of state at-
tributes and notifications. First, we define the semantics
and computing formula for the current availability, based
on operational state changes. Second, a combination be-
tween the current availability and severity-based events is
used to define the health o f a system component. Finally,
some thresholded events concerning the usage state are
proposed and interpreted in concert with the health.

The state change model within the large distributed
system identifies the majm cooperating parts involved in
the management of state changes. A simplified model of
DSs and the interaction with its managing system is pre-
sented i n Figure 1. Real DS resources are abstractly rep-
resented by managed objects in management repositories.
conforming to MIBs. Currently, real DS resuurces send
events, e.g. enubleStutr or disubleStute, reporting their
operational state changes. For example, the event m a -
bleStute determines the operationalstate attribute value to
be enublrd.

Managing

ME3 Abstract Represenration of Real Kcsources1 - U System
stateChange
event t y p s

- mabledState
- disabladState Real DS Krsources

Figure I . State chunge model for reul DS resources

22

3.1: Current availability

From the management point of view, we distinguish
three kinds o f availability: 1) uctuul, 2) estimated, and 3)
objective. The uctuul uvuilubility represents the model of
the real world. Its value niay continuously change, ac-
cording to the concemed system resource. The estimuted
trvcriltrbility defines the availahility value, as calculated at
different instants in time. The objective uvuilubility is the
availahility value. as considered by the system specifica-
tion. The objective availability is that claimed by the
ccirnpcinent producer. as a result o f statistical measure-
ments across rn'any groups o f products, and over long
time (sciinetimes, i t is called usy'mptotic~ trvcdirbility), e.g.
0.9996 for a satellite channel [IO] . The estimated availa-
hility is cvmmonly computed each time an operational
state change c)ccurs. Its value is valid up to the next con-
puting, and constitutes the unique value considered by the
rnnnaging system. Hence, hereafter we refer to it as cur-
rcxt tivuilubility, as viewed by the managing system. Re-
tween two sequential computations, the actual
civailnhility value really defines the component availahil-
ity. The current availability substitutes at the manage-
ment level the actual itvailahility during this interval.
Consequently, when the current availability is computed,
its value is equal t o that o f the actual availability. In time,
the current ancl actual availahility tend t o the objective
availability.

According to the preceding definitions, the current
availahility represents an estimation ohtained by meas-
urements, based o n timestamps of operational state
change events, as shown in Figure 2.

0p erat ion a]

disable enable disable enable
event event

eiiabled I

f , tune
I i)

A useful representation of state transitions by using
the FSM (Finite State Machine) shown in Figure 3, al-
l tws us to identify internal or external events involved in
the management of component states. The insert event
represents the first event used to communicate to a system
that a new resource has been inserted. The first initialisa-
tion of its corresponding managed object is performed by
the sturt-period event. We are concerned with the re-
source behaviour after this event occurs.

Each time the component is removed from a system
(rertiovc event), an inscrt event and then, a start-period
event are required in order to re-start the cc)mponent. Af-

ter an event sturt-period the operational state is enable
(Figure 3). A renuwr event can act in both operational
states o f a component. Internal events (enuble, disuble)
determine operational state changes and simultaneously
the occurrence of the appropriate external notification
(enubleStute, disubleStufe) sent to the appropriate man-
aging object. We can measure this interval between two
consecutive events remove and insert. In conclusion, this
model permits all measures for creating statistics o n the
availability. In the following, we are concemed with how
to compute current civcdability vulues.

start-paiod remove
event ; - - - \ -'-.-

\, went

/y-J eiiab I ed

drsahledState

enable f \I disable

3 e ahledState

iiaert

Figure 3. Finite stute representution of thr
operutionul stute of t i real resource

where the events have the following meaning:

r
start-period: extemal start event at the first lnitialisation of the

resource represented by these states and transitions;

start-period action. when the resource has been delibe-
rately dLsconnected by extemal reasons (such of
resource removals) and the real state was enabled:

start -period action. when the rcsource has been deh-
berately removed, bemg UI the state drsabled;

insert each time a resource begins a new period after a
repair activity or tnamtetiance activity (after remuve event)

enable: operational state chaige eveiit from the disabled state

to the enabled smte ;

daable: operational state change event from the enabled state I to the disabled state

3.2: Current availability and derived features

Current uvuilubility is U feuture of a system compo-
nent representing the uvuilability of component's servic-
es up to U given time. Its vulue defines how long this
component hus been in the operutional state enuble since
its initializution.

Consequently, the current availability value is a con-
tinunus fiuzrtron of time, defined as a quotient hetween
the amount of time where the resource was heen in the en-
abled state (commonly called operutionul time) and the

23

iihservatirin penod (hetween the time 43 ot the event s i t u -
period arid the time t of the end of the ohservatirin penod)

As shown by formula (I). the actual availability val-
ue is a r'ontini*oiu.fitnction (f time. defined as a quotient
hetween the amount cif time where the resciurce was been
i n the enabled state (cciminonly called opcr<ilionril f i rm)
and t h e observation period (between the time h of the
event sttrri-period and the time t cif the end cif the obser-
v a t i i i n per ioci).

For management purposes. this formula must he used
at any time t E T. However. polling responses and notifi-
caticins are issued at different timestamps t , E T. For the
CI in1 p u ta t i c i n in ec h anis m , this form u 1 a is t i me and space
consuming when it i s applied at each state change event.
hecause [he system must memorize the behavioral history
cif state change as <event type. timestamps> and recom-
pute the fcirrnulae (I) each time the actual availability val-
ue is requested. Consequently. t c i calculate the a($)
values. we utilize an on-linc recursive forinula (E). This
way is less expensive in terms o f cuinputing and storage

The actual availability can is calculated each time an
stute churrg<> vent occurs, or on-dummd at the initiative
o f managing objects, i.e. hetween two state changes. For
the ciefinitiiin of computing formula. we consider first
two consecutive operational state change events, as pre-
sented in Figure 4. Each state change event has the times-
tamps (i f its occurrence attached to. The fi)rmula (E)
alluws us to compute the current availability Lit ,) , which
is valid within the interval [t,. tl+,). by knowing the cur-
rent availability a(<.l), which is vaiid within the interval

costs.

[L l > tl).

I disnhle enable 1

where X (1) has thesar~ieexprwsmii ils: 111 formula (1). 1 and t, ~11ean just heiorc t,.

Current uvuilubility tendency 111 [ti., , t i] , E o) is a qual-
ifier cif the u(t) variation in an interval delimited by two

consecutive operational state changes. As we have seen,
the t i (t) values vary over time. g([t,.l, t i] , k) is an infor-
mal evaluation of the current availability variation with
respect to an acceptable variaticin k &g within [ti., , t,]. The
definition of the g([ti-l, t i] , E O) is the following:

Based on the current availability values, we introduce
the weighted izveruge (f current trvuilubility z (t) as a
measure with emphasis on recent u(t) values.The more re-
cent u(t) values should be taken into account with a high-
er weight. Based o n Figure 2, where the computed values
are performed at ti , we consider the weighted current
availability which emphasizes the latest a(t) values hy an
exponential factor. This factcir takes into account the
length of the interval that has heen considered:

a($)= (J-(i [I + L x air,) x expit, - t,., J) / I I + q (t , - I,.])) (IV)

wherein h = 0. if the operational state within [ti. , , t i) is
disabled, and h = I . if the operational state within (tl.,, t,]

is enabled.

3.3: Alarm refinement in operational state enable

We classify alarms occurring in the operational state
enubled into three severity levels: wurning ulurms, criti-
cui ulurms, and oufstmding ulurrrrs. For example, low-
level-1 of the tank-toner of a printer is a warning alarm.
After this alarm occurred, the printer still works, the text
quality is good enough. but, if this alarm is not cancelled.
i.e. handled by processing its origin and eliminate its
causes. the 00.5 may degrade. We call this state
wurningEnubled. If the cause cif this alarm is solved. the
operational state becomes mubled. If not, a critical alarm
may occur, i.e., low-levei-2, when the printer operational
state becomes criticulEnubled. From this state, the
printer could become disabled, if the alarm low-lrvel-3
occurs. Otherwise, the printer becomes enubled, if the
cause of the alarm low-level-2 is completely eliminated,
or wurningEnublrd if the cause is only partly eliminated.
Each time an outstanding alarm occurs. the state disabled
is reached. For example, the w'arming alarm, i.e. a high
internal temperature of a printer, determines the de-acti-
vation of printer services. regardless the current opera-
tional state. The model of alarms classification must be
defined for each component type. as shown in Figure 5 .
It is not mandatory for a component type to prescribe all
these kinds of alarm types. Additionally, it is not relevant

24

if this alarm is sent by the concerned component, c)r it is
captured by other components across their relationships.
This means that. even if the concerned object does n o t
specify such o f alarms, the transitions of its state change
model can he ensured by other partners.

warmngA1,um WamingAlarm: low-toner-level 1
critlcalAlarms criticalAlm: low-toner-level2
outstandingAlms outstandmgiilm: low-toner-level3. w m g ,

Figure. 5. Alwm rkawjirution in the
operurionul stute mcibled

3.4: Thresholds of the usage state

Many system resources have a limited capacity of
their services. This can he expressed as numher of clients
simultaneously served, memory space, or huffer space.
For example, a Lantastic network operating system al-
lows a maximum of 80 staticins. but the QoS is fuliy guar-
anteed on ly up tn 20, while over 75 , i t s services are very
sluw. Such kinds cif thresholds are also typical for CPUs,
multimedia servers, e-mail servers, etc. Consequently, we
define between idle and busy, two thresholds specific to
different types of components. When the capacity occu-
pancy exceeds the first threshold, the usage state becomes
warningActive, whereas alter the secund threshold, the
usage state is criticalActive. When a resource is first ini-
tialized, its usage state is idle. When a new user is served,
the usage state becomes active. According to changes cif
the number of clients, or the use of the resource capacity,
and with respect to threshold1 and threshold2, the compo-
nent is either in the warningActive state, or critical Active
state, respectively. If a new user is served at the limit of
the maximum capacity, the the original maximum capac-
ity decreases because of a failure, or a user request a lot
of capacity, the usage state becomes busy.

The model of thresholding usage state values is pre-
sented in Figure 6. All components portraying a limited
capacity and one or buth thresholds must accordingly
adapt their usage state.

thershold2

... 110 users idle

Figure 6 . Thresholds of the ursuge stute

4: Performance evaluation

The rationale to compute the current availability and
to extend the operational state model and usage state
rnodel was to dynamically and transparently capture the

real behavior of a system resource and accordingly adapt
reconfiguration activities.

4.1: Policies
These models o f the component behavior are useful

for the system monitoring, M C ~ to create client-server like
ccioperation relations, achieving the best QoS across
these cooperation relations. We describe further the use
of our proposal concerning the current availability, oper-
ational state, and usage state to build management poli-
cies concerning the system monitoring and cooperation
relation establishement. A management policy may be a
part of, or the whole behaviour of, a management appli-
cation. A management policy is a statement of the form:

.rpohcy-namo::= if aondiuom
then {<ncoom>

where <condition> is a predicates on property values of a
system component, while <actions> represent manage-
ment actions. These management actions can be simple
updates of component properties, c)r complex manage-
ment activities performed hy managing Objects.

A management prilicy can implicitly use generic
well-known policies, such as m u {a, b) , min (a , b}, pri-
ority ordering {a, b, c, cl...}, the FIFO policy, etc.

Simple management policies can he combined. Po-
tential conflicts between different actions prescribed by
each policy are partly solved by using generic policies.

4.2: Monitoring policies

Monitoring policies may independently use criteria
based either on the current availability, operational state.
or usage state. All following policies concem a given
component, or a given set of components. A simple mon-
itoring policy based on the current availability could be
expressed as:

PI: d ;(I)< ZQ

hen
admmtrahveState = sliuttmg-down
and
pollingFrequency = f (;(t)], as defined in [SI

where ;lo is a threshold of the current availability defined
by the management system for those system components
playing critical roles for particular applications. Such a
component may be a satellite channel, a CPU. an operat-
ing system. ur a host playing the role of a management
station.

A policy based on the operational state could be:

P 2 if opState = criticalEnabled, then
dmmstrativeState = in-active-test

or
P3: I f opSrate = wamingEnabied

then
admmstrahveState = in-passive-test
and
polhgFrequency = f(z(t)) .

25

The usage state values inay be used to build monitor-
ing pcilicies. These policies ensures an optimal solution
fur load-balancing algorithms ([31, see also Section 4.3).

P4: i f usStite = criticahctive.
diel1

ndiniuisuativzStlte = shutruig-down

t rr
PS: ii uaState = WaniIugActive.

diel1

pollingFrequancy = ~(usSrnrzr. M d e f u d UI 161.

These simple policies can be combined to monitor
mc.ire complex situations. The problem raised in this case
is the potential contradiction between management ac-
tions independently specified by each policy. Some ge-
neric pcilicies nre used to solve these contradicticins.
which are particular to different contexts. Let us consider
1'3 ancl PS. leading to the pcilicy P3S. Then. the choice of
i he pcilling frequency is performed by the generic policy
expressed as inax (a. b) ,

P35: if opStare = u x n i n g h i a b l u l .
Yid
usState = cnucalActive

pulhugFraquency = max ; f (; c t j) . g(u~Stl ta11
[lieu

Other contradictions may appear with respect to the
changes decided for the administrative state. In this case,
n policy establishing a priority between the values of the
administrative state is requested. For example, if we con-
sider the policies PI and P3, the policy PI3 may be as fol-
l(1wS:

PI 3: I f Z(t)< ao.
aid
opState = waniingEnabled

achnniatrativeState = shutting-down
.and

then

polimgFrcqua1q'= f (;(I)).

In this case. a priority policy between the states of the ad-
ininistrative model has been introduced. i.e. shutting-
down hr~s-ci-~reuter-~,riority than in-passive-tests.

4.3: Establishing cooperation relations

Commonly, establishing cooperation relations im-
plies many kinds of constraints. expressing the requested
QoS c)r the current state of the system resources which
must interact. In distributed systerns. identical or similar
services can be offered by many resources. QoS issues
concerning static properties of potential ccioperating re-
sciurces. offered as interface constraints by their appropri-
ate managed objects, have been presented in [6]. In the
folluwing, we emphasize QoS constraints related to the
real performance of cooperating objects. The problem is,
hvw to select the most available server for a client, based
(i n the current measures and models that we have pro-
posed in this paper. We define the relation is-better-than,

represented as "CI 2- C2" and read CI is-bettcr-[hun C2,
between two components CI 'and C2, if, from the man-
agement point of view, the QoS offered by CI is better
than the QoS o f ferd by C2, based on their current avail-
abilities, operational state values, and usage state values.
The same relation can be used for ordering operaticinal
state values and usage state values, as well as current
availability values. By definition,

gMbied
idle

wurmngEnaDled P cririialEna11led i disabled,
wurnrngiisaqc * crificdlisage Z- Dwy. und

3flc, >- nlilc2, I f a(r)ci > 3 t) C 2 .
where a(represents at) of the component Cy.

We define the heulth of a component with respect to
its weighted current availability and its operational state,
as h(rjc = < op.S'trrre,~(t)>l-. We present several decision
policies baseci on the health of a component and its usage
state. Consequently, a rn'anagement policy CI i- C2,
called o)~,ercirionci/-stcIrc.-Sirst. can be defined as:

while a management policy CI
uvrdubility,first, can be defined as:

C2, called current-

QoS is directly dependent of the loading for many
types of servers. Consequently, we define the tuple
<hrulth, mStutr>C, as a potential performance o f a given
component C. Consequently, a management pcilicy CI *
C2, called hrulth-first, can he defined as:

while a management policy C1 i- C2, called usStute-
j k t . can be defined as:

<-/ F. CZ Q (usStite!-l F. usStatq-2) v ((usSwte,-, = usStitetr) A

iaitJci a(t)alz),

Other policies can he used to select a server, e.g. a
cost-based policy [7] . Consequently, we can combine
cost and functional aspects i n different policies to select a
better server. A policy called cost-only can be defined as:

('i Z ('2 Q (Cost!-, i Loarm).

5: Implementation aspects
5.1: Definition of the current availability

function and its computing algorithm

We are only concerned here with the on-line comput-
ing using the on-line current avuilubility function and the
on-line algorithm implementing it. For simplicity we will

26

subsequently use the Aid(t,) = (a(ti), &(ti), @(([ti.,, $1, ~ g)]
notation to describe the properties related to the current
availability at the time ti for a system component id. The
on-line upprouch refers to the in-time and recurrent com-
puting of Aid($) values. For each component, all chunge
events and timing stumps are recorded somewhere, as pre-
viously presented. The on-line function infers new Aid($)
values, based on Aid(ti-1) values, by considering the state
change event (disable, enable). The on-line function re-
quests as input data only the component identifier, the
identification of the change event, and the Aid(ti-1). For
simplicity, in the on-line algorithm we consider the cur-
rent availability tendency threshold = 0.

5.2: Implemen ta t ion aspects conce rn ing
change events

To apply the computing function, we have assumed
that input data events are recorded somewhere. In fact, in
the actual networks, these: data are registered by State-
ChangeEventRecord class [ISOIIEC 101 64-21 which of-
fers additional information on change events. We have
identified three classes of problems which can arise by
applying the algorithm implementing the on-line func-
tion, that is, (1) the change: record capacity. (2) the mode
of the record deletion, and (3) the scheduling of measure-
ment periods. The chunge record cupucity (the Max-
LogSize attribute of the LogRecords class) limits the
number of computed values if MaxLogSize value is de-
terminute [ibidem]. If MaxLogSize is indetetrninute, the
algorithm can be applied any time. The m d e of rhe
record deletion (the LogFullAction of the LogRecords
class) determines the maximum time interval where data
are available for the algorithm. If the LogFullAction val-
ue is wrup, the earliest set of records will be deleted. Con-
sequently, the algorithm has not a long view on input
data, and it can not be retroactively used over the MaxLog
Size value. I f the LogFullAction is halt, records already
in the log will be retained, but no more records will be
logged. In this case, the computed Aid($) values are not
updated. The algorithm can be useful for only state
change records up to the hull moment. The scheduling
munner affects twice the algorithm: first with respect to
the input data (computing within the interval [$,-,in,
and second, related to the initialisation data. LogRecords
presents the LogSchedullingPackages attribute having
three option values: daily, weekly, or a [t--, period.
Thus. the input computing interval of the algorithm must
be less or equal to LogRecords scheduling interval. In the
case of a new scheduling period, the initial health values
must be the last computed values within the previous
scheduling period.

5.3: Aspects of t h e on-line init ialisation

Two aspects related to the initialisation are relevant.

The first refers to the recording of current uvuilubility
values, and the latter to the usability mode of the system.
The on-line algorithm needs the last wmputed Aid(ti-1)
values to calculate the updated values at ti. Four imple-
mentation solutions are possible namely, (1) appropriate
current availability attributes of the managed object rep-
resenting the real DS resource represent computed val-
ues, (2) a special currentAvailabilityChangeRecord class
which inherits from the StateChangeEventRecclrd
records these values, (3) there is a special currentAvaila-
bility class inheriting from LogRecord class which
records only the (Aid(t,), s I i } values, and (4) a special
current availability data base dedicated to these val-
ues.The first case implies the addition of several at-
tributes representing Aid($) values. Consequently, the
MIB components must be slightly completed.

In the next two solutions, the new classes partially in-
herit also several constraints related to the mode of the
record deletion mode and to the scheduling munner fbr
recording. If the mode is wrup, the link between the com-
puted health values at ti.1 and the computing step at ti can
be broken. If the mode is hull at there will be several ti
(& < ti), the on-line algorithm applies with errors across
the time interval between t, and ti (halt(t,) and Aid($)). A
similar aspect appears between stop (periodp) and restart
(periodp+l) scheduling periods.

In the fourth case, the Aid(ti) records are independent
of aspects arising due to the LogRecord class. Moreover,
Aid($) values are individually recorded for each DS com-
ponent. Consequently, the managing objects can easily
evaluate in time the current availability of each compo-
nent.

The input data at ti are based on Aid(ti-1). Since the
registered timing is system-use dependent, we have iden-
tified three functionul continuity contexts with respect to
the initialization of the on-line algorithm: (1) the DS is
continuously used without breaks, (2) the DS is used pe-
riodically, and (3) the DS is used intermittently without a
well defined frequency. Regardless of the context, the
Aid(ti) values must be computed at correct time stamps.

If the system continuously runs, the on-line algo-
rithm allows to easily pass from a computing period (tT)
to another, since only few data must be stored namely,
Aid(tT) values, where tT is the length of a considered pe-
riod. If the event pair (remove, sturt-period) is within the
same running period of a system, we can compute the un-
availability time for the intarruptions with repair compo-
nents.

The event sturt-period ensures the initialization as
prescribed in the input data of the on-line algorithm. If the
system works in these two contexts, the inactivity period
is not caused by the component. Consequently, this time
is ignored in computing current values. The start-period
event for a component must consider the initial values
corresponding to the values computed at the end of the
precedent period.

27

6: Using current availability features within
DSs

Let us suppose now that we have somewhere current
availability values as previously introduced. In the gener-
al case, a managing system may have three h n d s of views
on the current availability values of real DS resources, de-
pending on the period that the managing system keeps
these values: (1) the last updated vaiues, (2) a set of val-
ues within one period, and (3) a set of values across sev-
eral successive periods. The managing system can use
these values for different purposes as follows, as suggest-
ed by different kinds of policies presented in Section 3:
I . - to build availability statistics on new DS components;
2 . - to update availability statistics on existing DS compo-

3. - to monitor DS components with respect to guaranteed

4. - to predict future current availability of a component;
5. - to establish consistent customer-provider cooperation

nents;

threshold values for their availability;

relations based on the current availa -
bility values.

6. - to improve the existing DS configuration;
7. - to accommodate the polling frequency according to

the current availability tendency.
Since the first two cases are straightforward, we con-

centrate on the remainder. Let us take again the satellite
channel example, whose uvuilubility guaranteed is A =
9’3.6. If, for instance. one accepts a deviation of = 2.5,
the uccepted uvuifubifity becomes 97. I. However, each
satellite channel presents its own current crvailubiliry at
run time. Several scenarios could be considered. If the
channel has a decreasing current uvuilubiliry tendency,
the management system must simultaneously look for an-
other channel (prediction) and indicate this aspect to the
reconfiguration module. If the giwrunteed threshold is
nearly reached, the polling freqwncy must be updated, in
order to capture the current cwlution more frequently.
Once the cirrepted uvczilubility is reached, the managing
system must lock the administrativestate of the corre-
sponding managed object, avoiding an in-rhuin degrudu-
tion.

Let us suppose now that a high priority upplirution
needs a host node within a network. Knowing the Aid($)
values, a manager can choose between the most available
nodes (ullotufion uspects). Even further, if a system com-

several constraints expressed by requested Aidti) values,
the allocation can be performed by taking into account
current avuilubility vulues offered by potential customers
and other policies presented in Section 3.

Finally, if no requested services are detected, but sev-
eral DS components have a decreasing current availabili-
ty, the management systems may decide to reconfigure a
part of the DS in order to ensure the system survivability.

ponent needs services of another system component with

This approach has been implemented in two distinct
applications. The first one has considered management
procedures for evaluating the provider health in a hierar-
chical architecture. The work h a s been implemented at
the University of Montreal by using the language Mondel
in the OSIMIS [1.51 environment. The second application
refers to the variable polling frequency used by managers
within distributed systems to get current information on
component states. The optimization of the polling fre-
quency is based on the operational state and the health
evaluation. The implementation platform consists of
SNMP-agents [SI and a SNMP/CMIP-proxy [17].

7: Conclusion and future work

We have presented a way tu evaluate the availability
of a system component in real-time. We have propused a
procedure to compute the current availability, and de-
fined several derived features (currenf uvuihbility ten-
dency and weighted uveruge Of current uvuilubility) used
for monitoring system components represented as man-
aged objects. Different aspects related to a real imple-
mentation of a computing algorithm according to existing
real systems are described. Several management issues
using current measured values are presented.

A combination of real-time measurements and cer-
tain refinements of the operational and usage states of a
managed object allowed us t o propose different manage-
ment policies. Based on the relation is-better-thun, that
we proposed, we have presented various concrete cumbi-
nations of simple management policies.

We have considered a single system component at a
time. We have shown that even in this simple case, the
QoS management can be enhanced by our approach. The
algorithm for computing the current availability has been
fully implemented,

The next aspect is how these component features may
be combined within a subsystem having many compo-
nents which interact. We are currently working on an al-
gorithm to automatically infer similar properties for
subsystems composed of several components.

Acknowledgements
This work was funded by the Ministry of Industry,

Commerce. Science and Technology, Quebec, under IG-
LOO project organized by the Computer Research Insti-
tute of Montreal, and by a grant from the Canadian
Institute for Telecommunication Research (CITR) under
the Networks of Centres of Excellence Program of the
Canadian Govemment. The authors thank Catherine Ag-
baw and Kame1 Bendaas for implementing certain as-
pects related in this paper. Reviewers’ comments helped
us to improve the presentation.

28

References

[1] Harold Aschold and Harry Feingold, Repairable Systems
Reliability: Modeling, Inference, Misconceptions, and Thcir
Causes, Marcel Dekker Inc.. New York, 1984. &ecNre
Notes in Statistics, Volume 7)

[21 Alessandro Buolini, On thc Use ofstochastic Processes in
Modeling Reliability Problems. Springer-Verlag, 1985
(Lecture Notes in Economics and Mathematical Systems,
252)

source Management in Local area Networks, in h c . of the
Intemational Conference on Advanced Information Process-
ing Techniques for LAN and MAN Management, IFIP WG
6.4. Versailles, France, Avrit 1993, pp. III/29-38

[4] ISO/IEC 9596-1 :1991, Injormation technology - Open Sys-
lcm lntcrconnection - Common Management Information
Protocol - Part I : Specification. CAN/CSA-Z243.142-91

[SI Petre Dini, Catherine Agbaw, Real-Time Pro-active Man-
agcment nf Distrihuted Systems Based on Variahle Polling
Frcquency, Technical Report, IGLOO Project, CRIM/Univ-
er-sity of Montreal, Uecember 1995

[6] Petre Dini, (kegor v. Bochmann, I s m Hamid, Dynamic
Constraints Spccificaiion of Object Interactions Within Dis-
trihuted Systems, in “Dynamic Modification of Distributed
Systems Speclfication using Object-Oriented Techques”,
ed. Issnni Hamid, Project Number 06044195, sponsored by
The Ministry of Science, Culture. and Education of Japan,
Japan, March 1996

131 Raouf Boutaba, Beltil Folliot, Pierre Sens, Efficient Re-

[7] Petre Dini, Gregorv. Bochmann, Modeling QoS Multimedia
Costs in Distributed Systems, The 1996 Pacific Workshop
on Distributed Multimedia Systems, Hong Kong University
of Science and Technology (MUST), Hong Kong, June 25-
28, 1996.

[8] Sidnie Feit. SNMP: A Guide to Network Management, Mc-
Graw-Hill, Inc., 1995

[9] Charles R. Kime, System Diagnosis, in: Fault-Tolerant
Computing - Theory and Techniques, ed: Dhiraj K. Pradhan,
hntice-Hall,1986, New Jersey 07632

[IO] Krishna K. Misra, Reliability Analysis and Prediction, El-
sevier, 1992

[111 Michael K. Molloy, Fundamcntnls of Performance Mode-
ling, M a c d a m , Publishing Company, 1989, New York
10022

[121 Alain Pagbs and Michel Gondran, System Reliability: Eval-
uation & Prediction in Engineering, Springer-Verlag,
1986

[13j Shahen Neyaz, Estimation of Reliability Parameters of a
Redundant System with one Stundby und one Repair Facil-
ity, Master Thesis, Concordia University, 1987

1141 J.J. Stifter, Computer-Aided Reliability Estimation, in:
Fault-Tolerant Computing - Theory and Techniques, ed:
Dhinj K. Pradhan, Prentice-HaLLl986, New Jersey 07632

[IS] *** A Guide to Implementing Managed Objects Using
the GMS. Version 2.99.1, UCL, October 1992, Draft1

[I61 Pramode Verma, Mod2les de performances des rdseaux,
InterEditions, Paris, 1992

1171 Catherine Agbaw, Mamgemcnt Data Collection unci
Gateways, M.Sc. Thesis, Mc(3ill University, 1994.

29

