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Abstract 
The performunce evciluution of hurdwtrre und sofmure 

sysrerri components is bused on stutistics [hut ure long 
views on the behuvior of thesc components. Since system 
rrsoirrccs muy huve unexpected behuvior, relrvunt cur- 
r rn t  infiormution becomes iuefid in thr riiunu~ernent proc- 
ess 1 4  tliese systcnrs, esptJciully for &tu ~yczrhering:, 
rrc~onfigitrcition. und fuult deteciion trclivities. Ac~ticully, 
ihcrr uri’ ,fcw criteriu to properly evulirrrtr the currmt 
crvciiluhility of componi~nt servici.s within distributed s]vs- 
tcrns. Hence, the nu~nugement systc’rn run not reulisticully 
sclect thi’ rnost suitubie decision fiir reconjigurution. In 
this puper, we present U proposul f o r  U continuous evalu- 
ution of rwnponcnt behuviour reluted to slute chunges. 
This rriotic2l is further extendd by considering different 
cutiigories (If events concerning the degrudution of the 
oprrutionul stute or usuge stuce. Our proposuls ure bused 
on r h ~  possibility of computing ut the component level, 
thc. current uvuilubility of this component by continuous 
c~val~iutictn. Wc. introduce severu! ciirrmt uvuilubility feu- 
titres unci ~)rfo~)(ost~~orrriulil to compuie thi>nl. Other evmts 
conrcJrnin,q ti rntmuged object urc c~luss~j7ed us wuming, 
i ,r it icxl or outstunding, which l ~ u d s  to U nuire uc‘curute 
rtpclrutionui v i m  on (1 corriponent. .S’evi~rtil counter-bused 
c’vc’nts iire thresholdeti t o  improve predictczble reconfigu- 
rution decisions roncc.rnin,q the mubility of a component. 
The rriuin goul is to offer to the munugement system cur- 
t - m l  relcwunf informution which cun be used within mun- 
ugrrnent policies. These policies could refer to the 
enhuncmzent of the truding-bused system services, the 
jleniblr polling freqwncy tuned with respect to  the cur- 
rent evuluution, or purticulur uspects reluted to dynumic 
tests within distributed systems. Implernentution issues 
with ri>spect t o  the stundurd ri~commencimtions within dis- 
~ r i b ~ i t ~ i t  systems ure presented. Finully we describe how 
the rcJconfigurution munugement sysrerri cun use these 
fcwtures in order to monitor, predict, improve the existing 
c,onjigurution, or uccommodute the poiiing frequency uc- 
cording to scverul simple criteria 
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1: Introduction 

In the object-oriented approach, system resources 
are represented by objects portraying many behavioural 
facets. Commiinly. two distinct specifications ci f  the he- 
havior of a resource co-exist. ( )ne  specification describes 
the operational behavior o f  a resource. i.e. what it  does in- 
dependently of m y  management. its own functionality: 
the TCPfiP prr)tocul, moclein hehavior. briclge’s cipera- 
tions. The other specification defines how a resource cnn 
be managed in correlation with the operational behavior, 
i.e. its management behavior. It constitutes the managed 
object definition. that must be written in accordance with 
the information structure of the MIR (Management Infor- 
mation Base). A management system is an application 
which consists of specialized managing objects playing 
different management roles, such as monitoring, fault de- 
tection, or reconfiguration. These roles are fulfilled based 
on the information they collect across management oper- 
ations on managed objects, by interpreting the results of 
these operations that come back. In the pro-active man- 
agement approach, the collection of information is initiat- 
ed by managing objects. Often. real resources hehave 
unexpectedly. When a relevant event happens to o r  in the 
resource. its appropriate managed object Inay spontane- 
ously generate notifications. Consequently, the managing 
objects interpret not only the operation results, but also 
object notifications. To allow this interaction between 
managing and managed objects, management operations 
and notifications are two important features which must 
be defined by the management specification. Manage- 
ment operations constitute the management interface of a 
managed object. In object-oriented system specificaticins, 
a managed object is an instance cif a type. Consequently, 
a type definition must be documented with visible prop- 
erties, favouring the interaction o f  its instances with the 
management system. These properties are represented by 
1) state attributes which represent the operational, usage 
or administrative state of the concerned resource, 2 )  man- 
agement operations, that can affect either the managed 
object attributes, at the instance level, or the managed oh- 
ject as a whole, 3) matching rules to apply the CMIP fil- 
ters [4], 4) management behavior, according to the func- 
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tional behavior of resources, 5) notifications and circum- 
stances to emit them, 6) specific packages, as well as its 
position in the inheritance hierarchy [ISO/IEC 1016.5-41. 
I n  this paper, we are concerned with the use of state 
changes ‘and notifications to evaluate the performance of 
a system component, which becomes relevant in self-re- 
configurable distributed systems. 

One of the more challenging problems associated 
with distributed systems is the subject of system manage- 
ment. Monitoring the functionality of complex distribut- 
ed systems implies vaious specific munugement 
uctiviticis with respect to resource allocation, dynamic 
system changes, and evaluation of these changes in order 
t o  offer the QoS (Quality of Service) desired by the  users. 
In small systems, management activities are performed 
either internally, by network operating systems, or exter- 
nally, in an ad hoc manner, by the system operator. Since 
dynamic prescribed changes or unexpected component 
behaviors, due to either users or the resource availability, 
are often possible within distributed systems, manage- 
ment aspects have became increasingly complex. The 
system operator must correlate its reconfiguration actions 
with respect to dynamic changes occumng in a system. 
Since within large computer systems the human operator 
is c.)verwhelmed by various conflicting situations, man- 
agement systems gradually overtake most human opera- 
tc )rs ’ tasks. 

Since dynamic properties allow an active manage- 
ment, we focus in this paper on state changes and notifi- 
cations. The main purpose of this paper is to propose a 
dynamic quantitative evaluation of a system component 
behavior. which may be considered in automatic recon- 
figuration policies. The goal is to offer to the manage- 
ment system current relevant information, which can be 
used within management policies implemented as the op- 
erational behavior of managing objects. Our proposal is 
based on the possibility of computing, across a managed 
object, the current availability of the resource it repre- 
sents by a continuous evaluation. A model of the current 
trvuilubility is presented. We introduce several current 
availability features of a managed object, and propose 
formula for computing them. Other events concerning the 
uperational state of a managed object are classified as 
wurning, criticul or outstunding, which leads to a more 
accurate operational view on a component, i.e. different 
alarms concerning the operational state are classified with 
respect to their relevance. A combination of these two 
concepts allows us to define the health of a managed ob- 
ject. For those managed objects portraying a maximum 
capability, the capability range is thresholded between 
idle and busy, to accurately capture the loading. Conse- 
quently, several counter-based events concerning the us- 
age state are evaluated with respect to threshold and 
thershold2, which lead to a warning c)r critical usage 
state. We define the relation is-better-than, that creates an 
ordering between system components offering an identi- 

cal or similar service. Rased on our model, several moni- 
toring and reconfiguration policies are described, as well 
as particularities for implementing them. 

The outline of this paper is the following. Shortcorn- 
ings of related work are presented in Section 2. In Section 
3, we introduce the models for the performance evalua- 
tion: the current availability and its derived features. Sec- 
tion 4 presents monitoring and reconfiguration policies 
based on our models: how these new properties can be 
used by the management system in order to solve current 
allocation or monitoring problems. Section 5 presents the 
implementation experience of our proposal related to ti- 
mestamps in areal system. Section 6 focuses on the utility 
of this proposal, while Section 7 gives some conclusions 
on our proposal and future work. 

2: Related work 
2.1: States, actions, and state changes 

Different classes of managed objects have a variety 
of stute attributes. Achange of at least one state attribute 
value determines a state change for the concerned ccim- 
ponent. A state change requires an uction to be fired for 
modifying an attribute value. This action could be either 
internul to a managed object (event), or externul, issued 
from the managing system (command). Consequently, a 
managed object representing a real resource provides 
two kinds of state attributes. The first category refers to 
the attributes whose values are updated by the resource 
itself in order to correctly present its operutionulSture 
(enubled, disubfed). A refinement of the operational state 
enabled can be specified by another state attribute called 
usageState (idle, active, busy). By interpreting these val- 
ues, the managing system may either apply policies 
within the subsystem with respect to the state of one par- 
ticular component, or decide to directly read across an 
administrative state attribute of this component, by 
means of commands. Commands act on the second cate- 
gory of state attributes, that is, attributes whose values 
are managed by the managing system. For instance, the 
value space (locked, shutting down, unlocked} of the 
udministrutiveStute attribute is modified only by the 
managing objects. 

Stute chunge aspects within distributed systems are 
important, since they are the basis for building manage- 
ment policies. Since state combinations leads to a com- 
plex management task, the state change munugement 
considering all component parameters is difficult to be 
performed. Hence, the managing system needs a unique 
criterion to evaluate and decide actions in response to 
state changes. In many situations, the resource allocation 
is based on human decisions in an ad hoc manner, and 
thus, it takes no advantages from an optimal and automat- 
ic process. More current  information is needed o n  state 

changes with respect to internal actions, which realistical- 
ly characterize current changes at the component level. 
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Despite several global approaches, the evaluation o f  the 
quality o f  the operational state using an unique criterion 
is currently bused on statistics. In the following. we pro- 
pose u continiuus evuluution of stute chunges, based on 
the possibilities of measurement within distributed sys- 
tems. 

2.2: Performance evaluation 

Reliubility. muinruinubility, and rrvuilubility are ma- 
jor topics with respect t o  the utilization o f  a software and 
hardware component. In order t o  cope with state change 
issues, many funndaniental performance rnodels based on 
state spaces, and taking into account these concepts have 
been proposed [ 1][2][ l o ] [  11][ 1211 13][ 161. The uvuilubil- 
ity represents the probability that a system is uble to work 
at any time during a given period. All studies consider 
that a component continuously alternates from the opera- 
tional state entrbled to the repair state tfisubled [2][ 101. 
Actual studies are entirely based o n  probabilistic up- 
prouchcs, where appropriate density functions stutisticul- 
l y  upprtximutP the component availability. The case of 
operutionui interruptions withoiir rtJpuir is less studied, 
although i t  is quite common within distributed systems. 
since it implies a continuous nlcwsure. However, even if 
a measure is continuously performed. the instant of a fad- 
ure cannot be predicted, and statistic values serve only as 
a relative comparison [ lo ] .  Pag6.s and Gondran have in- 
troduced the instuntuneowfuilure rule and instuntuneow 
rcJptair rut(> for a system, but their calculi use statistics 
laws, and only a munuuf melhod for solving small sys- 
tems is proposed [ 121. 

2.3: Continuous measurements 

The problems are: 1) what must be represented as rel- 
evant information within a managed object, and 2 )  how 
this information could be accurately interpreted by the 
managing object?. The first question is answered hy  ex- 
isting standard recommendations. A first proposal for the 
standardization of state attributes of managed objects is 
given in [IS0/10164-2]. Two attributes define internal 
component states, i.e. governed by internal events, name- 
ly opercltionulS[cxte and McugeStutP, whereas the udminis- 
trutiveStute attribute allows management commands 
(external events). Based o n  space values of these at- 
tributes, several critical combinations are identified as 
relevant for the managing objects. A special record class, 
called stuteChungeEventCluss, is proposed in order to 
record state changes or other relevant counter-based. or 
type-based events. Rased on this model. we can compute 
several continuous parameters in order to evaluate the 
current availability o f  ii u)mponent. regardless statistics 
laws. 

To answer the  second question, there are some diffi- 

culties related to the complexity of  calculi. However, the  
values of previous parameters can be entirely computed, 
based on the stute nudel proposed by standards. Conse- 
quently, the managing system has neither a unique crite- 
rion to evaluate and decide actions in response t o  stuw 
changes, nor to globally evaluate the state of many cciop- 
erating components with respect t o  the type of their rela- 
tions at a given moment. As a result, the transparency of 
management decisions is difficult to be achieved, guaran- 
teed o r  improved. 

Also. the lack o f  the pertinent computable informa- 
tion at the component level does not allow us to infer pre- 
dictive management decisiuns with respect to the 
component behaviour. Moreover, when changes within 
system reconfigurations occur due t o  relation changes cir 
component changes, the management system can neither 
evaluate the degree of the enhancement of  services, nor 
detect critical areas with respect to a degradation of offer- 
ing these services. Since there are no criteria to properly 
evaluate the current availability o f  services within a DS 
(Distributed System), the management system can not re- 
alistically select the most suitable solution. 

3: Model for the performance evaluation 

Our proposal concerns three related facets of state at- 
tributes and notifications. First, we define the semantics 
and computing formula for the current availability, based 
on operational state changes. Second, a combination be- 
tween the current availability and severity-based events is 
used to define the health o f  a system component. Finally, 
some thresholded events concerning the usage state are 
proposed and interpreted in concert with the health. 

The state change model within the large distributed 
system identifies the majm cooperating parts involved in 
the management of state changes. A simplified model of 
DSs and the  interaction with its managing system is pre- 
sented i n  Figure 1. Real DS resources are abstractly rep- 
resented by managed objects in management repositories. 
conforming to MIBs. Currently, real DS resuurces send 
events, e.g. enubleStutr or disubleStute, reporting their 
operational state changes. For example, the event m a -  
bleStute determines the operationalstate attribute value to 
be enublrd. 

Managing 

ME3 Abstract Represenration of Real  Kcsources1 - U System 
stateChange 
event t y p s  

- mabledState 
- disabladState Real  DS Krsources 

Figure I .  State chunge model for  reul DS resources 
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3.1: Current availability 

From the management point of view, we distinguish 
three kinds o f  availability: 1) uctuul, 2) estimated, and 3 )  
objective. The uctuul uvuilubility represents the model of 
the real world. Its value niay continuously change, ac- 
cording to the concemed system resource. The estimuted 
trvcriltrbility defines the availahility value, as calculated at 
different instants in time. The objective uvuilubility is the 
availahility value. as considered by the system specifica- 
tion. The objective availability is that claimed by the 
ccirnpcinent producer. as a result o f  statistical measure- 
ments across rn'any groups o f  products, and over long 
time (sciinetimes, i t  is called usy'mptotic~ trvcdirbility), e.g. 
0.9996 for a satellite channel [ IO] .  The estimated availa- 
hility is cvmmonly computed each time an operational 
state change c)ccurs. Its value is valid up to the next con- 
puting, and constitutes the unique value considered by the 
rnnnaging system. Hence, hereafter we refer to it  as cur- 
rcxt tivuilubility, as viewed by the managing system. Re- 
tween two sequential computations, the actual 
civailnhility value really defines the component availahil- 
ity. The current availability substitutes at the manage- 
ment level the actual itvailahility during this interval. 
Consequently, when the current availability is computed, 
its value is equal t o  that o f  the actual availability. In time, 
the current ancl actual availahility tend t o  the objective 
availability. 

According to the preceding definitions, the current 
availahility represents an estimation ohtained by meas- 
urements, based o n  timestamps of operational state 
change events, as shown in Figure 2. 

0p erat ion a] 

disable enable disable enable 
event event 

eiiabled I 

f , tune 
I i) 

A useful representation of state transitions by using 
the FSM (Finite State Machine) shown in Figure 3, al- 
l tws us to identify internal or external events involved in 
the management of component states. The insert event 
represents the first event used to communicate to a system 
that a new resource has been inserted. The first initialisa- 
tion of its corresponding managed object is performed by 
the sturt-period event. We are concerned with the re- 
source behaviour after this event occurs. 

Each time the component is removed from a system 
(rertiovc event), an inscrt event and then, a start-period 
event are required in order to re-start the cc)mponent. Af- 

ter an event sturt-period the operational state is enable 
(Figure 3). A renuwr event can act in both operational 
states o f  a component. Internal events (enuble, disuble) 
determine operational state changes and simultaneously 
the occurrence of the appropriate external notification 
(enubleStute, disubleStufe) sent to the appropriate man- 
aging object. We can measure this interval between two 
consecutive events remove and insert. In conclusion, this 
model permits all measures for creating statistics o n  the 
availability. In the following, we are concemed with how 
to compute current civcdability vulues. 

start-paiod remove 
event ; - - -  \ -'-.- 

\, went 

/y-J eiiab I ed 

drsahledState 

enable f \I disable 

3 e ahledState 

iiaert 

Figure 3. Finite stute representution of thr 
operutionul stute of t i  real resource 

where the events have the following meaning: 

r 
start-period: extemal start event at the first lnitialisation of the 

resource represented by these states and transitions; 

start-period action. when the resource has been delibe- 
rately dLsconnected by extemal reasons (such of 
resource removals) and the real state was enabled: 

start -period action. when the rcsource has been deh- 
berately removed, bemg UI the state drsabled; 

insert each time a resource begins a new period after a 
repair activity or tnamtetiance activity (after remuve event) 

enable: operational state chaige eveiit from the disabled state 

to the enabled smte ; 

daable: operational state change event from the enabled state I to the disabled state 

3.2: Current availability and derived features 

Current uvuilubility is U feuture of a system compo- 
nent representing the uvuilability of component's servic- 
es up to U given time. Its vulue defines how long this 
component hus been in the operutional state enuble since 
its initializution. 

Consequently, the current availability value is a con- 
tinunus fiuzrtron of time, defined as a quotient hetween 
the amount of time where the resource was heen in the en- 
abled state (commonly called operutionul time) and the 
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iihservatirin penod (hetween the time 43 ot the event s i t u -  
period arid the time t of the end of the ohservatirin penod) 

As shown by formula (I). the actual availability val- 
ue is a r'ontini*oiu.fitnction (f time. defined as a quotient 
hetween the amount cif time where the resciurce was been 
i n  the enabled state (cciminonly called opcr<ilionril f i rm)  
and t h e  observation period (between the time h of the 
event sttrri-period and the time t cif the end cif the obser- 
v a t i i i n per ioci ). 

For management purposes. this formula must he used 
at any time t E T. However. polling responses and notifi- 
caticins are issued at different timestamps t ,  E T. For the 
CI in1 p u ta t i c  i n  in ec h anis m , this form u 1 a is t i  me and space 
consuming when it  i s  applied at each state change event. 
hecause [he system must memorize the behavioral history 
cif state change as <event type. timestamps> and recom- 
pute the fcirrnulae (I) each time the actual availability val- 
ue is requested. Consequently. t c i  calculate the a($) 
values. we utilize an on-linc recursive forinula (E). This 
way is less expensive in terms o f  cuinputing and storage 

The actual availability can is calculated each time an 
stute churrg<>  vent occurs, or on-dummd at the initiative 
o f  managing objects, i.e. hetween two state changes. For 
the ciefinitiiin of computing formula. we consider first 
two consecutive operational state change events, as pre- 
sented in Figure 4. Each state change event has the  times- 
tamps ( i f  its occurrence attached to. The fi)rmula (E) 
alluws us to compute the current availability Lit , ) ,  which 
is valid within the interval [t,. tl+,). by knowing the cur- 
rent availability a(<.l), which is vaiid within the interval 

costs. 

[ L l >  tl). 

I disnhle enable 1 

where X ( 1 )  has thesar~ieexprwsmii ils: 111 formula (1). 1 and t, ~11ean just heiorc t,. 

Current uvuilubility tendency 111 [ti., , t i ] ,  E o )  is a qual- 
ifier cif the u( t )  variation in an interval delimited by two 

consecutive operational state changes. As we have seen, 
the t i ( t )  values vary over time. g([t,.l, t i ] ,  k )  is an infor- 
mal evaluation of the current availability variation with 
respect to an acceptable variaticin k &g within [ti., , t,]. The 
definition of the  g([ti-l, t i ] ,  E O )  is the following: 

Based on the current availability values, we introduce 
the weighted izveruge (f current trvuilubility z ( t )  as a 
measure with emphasis on recent u(t)  values.The more re- 
cent u(t) values should be taken into account with a high- 
er weight. Based o n  Figure 2, where the computed values 
are performed at ti ,  we consider the weighted current 
availability which emphasizes the latest a(t) values hy an 
exponential factor. This factcir takes into account the 
length of the interval that has heen considered: 

a($)= (J-(i [ I  + L x  air,) x expit, - t,., J )  / I I + q ( t ,  - I,.])) (IV) 

wherein h = 0. if the operational state within [ti. , ,  t i )  is 
disabled, and h = I .  if the operational state within (tl.,, t,] 

is enabled. 

3.3: Alarm refinement in operational state enable 

We classify alarms occurring in the operational state 
enubled into three severity levels: wurning ulurms, criti- 
cui ulurms, and oufstmding ulurrrrs. For example, low- 
level-1 of the tank-toner of a printer is a warning alarm. 
After this alarm occurred, the printer still works, the text 
quality is good enough. but, if this alarm is not cancelled. 
i.e. handled by processing its origin and eliminate its 
causes. the 00.5 may degrade. We call this state 
wurningEnubled. If the cause cif this alarm is solved. the 
operational state becomes mubled. If not, a critical alarm 
may occur, i.e., low-levei-2, when the printer operational 
state becomes criticulEnubled. From this state, the 
printer could become disabled, if the alarm low-lrvel-3 
occurs. Otherwise, the printer becomes enubled, if the 
cause of the alarm low-level-2 is completely eliminated, 
or wurningEnublrd if the cause is only partly eliminated. 
Each time an outstanding alarm occurs. the state disabled 
is reached. For example, the w'arming alarm, i.e. a high 
internal temperature of a printer, determines the de-acti- 
vation of printer services. regardless the current opera- 
tional state. The model of alarms classification must be 
defined for each component type. as shown in Figure 5 .  
It is not mandatory for a component type to prescribe all 
these kinds of alarm types. Additionally, it is not relevant 
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if this alarm is sent by the concerned component, c)r it is 
captured by other components across their relationships. 
This means that. even if the concerned object does n o t  
specify such o f  alarms, the transitions of its state change 
model can he ensured by other partners. 

warmngA1,um WamingAlarm: low-toner-level 1 
critlcalAlarms criticalAlm: low-toner-level2 
outstandingAlms outstandmgiilm: low-toner-level3. w m g ,  

Figure. 5. Alwm rkawjirution in the 
operurionul stute mcibled 

3.4: Thresholds of the usage state 

Many system resources have a limited capacity of 
their services. This can he expressed as numher of clients 
simultaneously served, memory space, or  huffer space. 
For example, a Lantastic network operating system al- 
lows a maximum of 80 staticins. but the QoS is fuliy guar- 
anteed on ly  up tn 20, while over 75 ,  i t s  services are very 
sluw. Such kinds cif thresholds are also typical for CPUs, 
multimedia servers, e-mail servers, etc. Consequently, we 
define between idle and busy, two thresholds specific to 
different types of components. When the capacity occu- 
pancy exceeds the first threshold, the usage state becomes 
warningActive, whereas alter the secund threshold, the 
usage state is criticalActive. When a resource is first ini- 
tialized, its usage state is idle. When a new user is served, 
the usage state becomes active. According to changes cif 
the number of clients, or the use of  the resource capacity, 
and with respect to threshold1 and threshold2, the compo- 
nent  is either in the warningActive state, or critical Active 
state, respectively. If a new user is served at the limit of 
the maximum capacity, the the original maximum capac- 
ity decreases because of a failure, or a user request a lot 
of capacity, the usage state becomes busy. 

The model of thresholding usage state values is pre- 
sented in Figure 6. All components portraying a limited 
capacity and one or  buth thresholds must accordingly 
adapt their usage state. 

thershold2 

... ...................... 110 users ...... idle 

Figure 6 .  Thresholds of the ursuge stute 

4: Performance evaluation 

The rationale to  compute the current availability and 
to extend the operational state model and usage state 
rnodel was to dynamically and transparently capture the 

real behavior of a system resource and accordingly adapt 
reconfiguration activities. 

4.1: Policies 
These models o f  the component behavior are useful 

for the system monitoring, M C ~  to create client-server like 
ccioperation relations, achieving the best QoS across 
these cooperation relations. We describe further the use 
of our proposal concerning the current availability, oper- 
ational state, and usage state to build management poli- 
cies concerning the system monitoring and cooperation 
relation establishement. A management policy may be a 
part of, or the whole behaviour of, a management appli- 
cation. A management policy is a statement of the form: 

.rpohcy-namo::= if aondiuom 
then {<ncoom> 

where <condition> is a predicates on property values of a 
system component, while <actions> represent manage- 
ment actions. These management actions can be simple 
updates of component properties, c)r complex manage- 
ment activities performed hy managing Objects. 

A management prilicy can implicitly use generic 
well-known policies, such as m u  {a,  b ) ,  min (a ,  b},  pri- 
ority ordering {a, b, c, cl...}, the FIFO policy, etc. 

Simple management policies can he combined. Po- 
tential conflicts between different actions prescribed by 
each policy are partly solved by using generic policies. 

4.2: Monitoring policies 

Monitoring policies may independently use criteria 
based either on the current availability, operational state. 
or usage state. All following policies concem a given 
component, or a given set of components. A simple mon- 
itoring policy based on the current availability could be 
expressed as: 

PI: d ;(I)< ZQ 

hen 
admmtrahveState = sliuttmg-down 
and 
pollingFrequency = f (;(t)], as defined in [SI 

where ;lo is a threshold of the current availability defined 
by the management system for those system components 
playing critical roles for particular applications. Such a 
component may be a satellite channel, a CPU. an operat- 
ing system. ur a host playing the role of a management 
station. 

A policy based on the operational state could be: 

P 2  if opState = criticalEnabled, then 
dmmstrativeState = in-active-test 

or 
P3: I f  opSrate = wamingEnabied 

then 
admmstrahveState = in-passive-test 
and 
polhgFrequency = f(z(t)) .  
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The usage state values inay be used to build monitor- 
ing pcilicies. These policies ensures an optimal solution 
fur  load-balancing algorithms ([ 31, see also Section 4.3). 

P4: i f  usStite = criticahctive. 
diel1 

ndiniuisuativzStlte = shutruig-down 

t rr 
PS: ii uaState = WaniIugActive. 

diel1 

pollingFrequancy = ~(usSrnrzr. M d e f u d  UI 161. 

These simple policies can be combined to monitor 
mc.ire complex situations. The problem raised in this case 
is the potential contradiction between management ac- 
tions independently specified by each policy. Some ge- 
neric pcilicies nre used to solve these contradicticins. 
which are particular to different contexts. Let us consider 
1'3 ancl PS. leading to the pcilicy P3S. Then. the choice of 
i he pcilling frequency is performed by the generic policy 
expressed as inax (a.  b ) ,  

P35: if opStare = u x n i n g h i a b l u l .  
Yid 
usState = cnucalActive 

pulhugFraquency = max ; f ( ; c t j ) .  g(u~Stl ta11 
[lieu 

Other contradictions may appear with respect to the 
changes decided for the administrative state. In this case, 
n policy establishing a priority between the values of the 
administrative state is requested. For example, if we con- 
sider the policies PI and P3, the policy PI3 may be as fol- 
l(1wS: 

PI  3: I f  Z(t)< ao. 
aid 
opState = waniingEnabled 

achnniatrativeState = shutting-down 
.and 

then 

polimgFrcqua1q'= f (;(I)). 

In  this case. a priority policy between the states of the ad- 
ininistrative model has been introduced. i.e. shutting- 
down hr~s-ci-~reuter-~,riority than in-passive-tests. 

4.3: Establishing cooperation relations 

Commonly, establishing cooperation relations im- 
plies many kinds of constraints. expressing the requested 
QoS c)r the current state of the system resources which 
must interact. In distributed systerns. identical or similar 
services can be offered by many resources. QoS issues 
concerning static properties of potential ccioperating re- 
sciurces. offered as interface constraints by their appropri- 
ate managed objects, have been presented in [6]. In the 
folluwing, we emphasize QoS constraints related to the 
real performance of cooperating objects. The problem is, 
hvw to select the most available server for a client, based 
( i n  the current measures and models that we have pro- 
posed in this paper. We define the relation is-better-than, 

represented as "CI 2- C2" and read CI is-bettcr-[hun C2, 
between two components CI 'and C2, if, from the man- 
agement point of view, the QoS offered by CI is better 
than the  QoS o f ferd  by C2,  based on  their current avail- 
abilities, operational state values, and usage state values. 
The same relation can be used for ordering operaticinal 
state values and usage state values, as well as current 
availability values. By definition, 

gMbied 
idle 

wurmngEnaDled P cririialEna11led i disabled, 
wurnrngiisaqc * crificdlisage Z- Dwy. und 

3flc, >- nlilc2, I f  a(r)ci > 3 t ) C 2 .  
where a( represents at) of the component Cy. 

We define the heulth of a component with respect to 
its weighted current availability and its operational state, 
as h(rjc = < op.S'trrre,~(t)>l-. We present several decision 
policies baseci on the health of a component and its usage 
state. Consequently, a rn'anagement policy CI i- C2, 
called o)~,ercirionci/-stcIrc.-Sirst. can be defined as: 

while a management policy CI 
uvrdubility,first, can be defined as: 

C2, called current- 

QoS is directly dependent of the loading for many 
types of servers. Consequently, we define the tuple 
<hrulth, mStutr>C, as a potential performance o f a  given 
component C. Consequently, a management pcilicy CI * 
C2, called hrulth-first, can he defined as: 

while a management policy C1 i- C2, called usStute- 
j k t .  can be defined as: 

<-/ F. CZ Q (usStite!-l F. usStatq-2) v ((usSwte,-, = usStitetr) A 

iaitJci a(t)alz),  

Other policies can he used to select a server, e.g. a 
cost-based policy [7] .  Consequently, we can combine 
cost and functional aspects i n  different policies to select a 
better server. A policy called cost-only can be defined as: 

('i Z ('2 Q (Cost!-, i Loarm). 

5: Implementation aspects 
5.1: Definition of the current availability 

function and its computing algorithm 

We are only concerned here with the on-line comput- 
ing using the on-line current avuilubility function and the 
on-line algorithm implementing it. For simplicity we will 
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subsequently use the Aid(t,) = (a(ti), &(ti), @(([ti.,, $1, ~ g ) ]  
notation to describe the properties related to the current 
availability at the time ti for a system component id. The 
on-line upprouch refers to the in-time and recurrent com- 
puting of Aid($) values. For each component, all chunge 
events and timing stumps are recorded somewhere, as pre- 
viously presented. The on-line function infers new Aid($) 
values, based on Aid(ti-1) values, by considering the state 
change event (disable, enable). The on-line function re- 
quests as input data only the component identifier, the 
identification of the change event, and the Aid(ti-1). For 
simplicity, in the on-line algorithm we consider the cur- 
rent availability tendency threshold = 0. 

5.2: Implemen ta t ion  aspects conce rn ing  
change events 

To apply the  computing function, we have assumed 
that input data events are recorded somewhere. In fact, in 
the actual networks, these: data are registered by State- 
ChangeEventRecord class [ISOIIEC 101 64-21 which of- 
fers additional information on change events. We have 
identified three classes of problems which can arise by 
applying the algorithm implementing the on-line func- 
tion, that is, (1) the change: record capacity. (2) the mode 
of the record deletion, and (3) the scheduling of measure- 
ment periods. The chunge record cupucity (the Max- 
LogSize attribute of the LogRecords class) limits the 
number of computed values if MaxLogSize value is de- 
terminute [ ibidem]. If MaxLogSize is indetetrninute, the 
algorithm can be applied any time. The m d e  of rhe 
record deletion (the LogFullAction of the LogRecords 
class) determines the maximum time interval where data 
are available for the algorithm. If the LogFullAction val- 
ue  is wrup, the earliest set of records will be deleted. Con- 
sequently, the algorithm has not a long view on input 
data, and it can not be retroactively used over the MaxLog 
Size value. I f  the LogFullAction is halt, records already 
in the log will be retained, but no more records will be 
logged. In this case, the computed Aid($) values are not 
updated. The algorithm can be useful for only state 
change records up to the hull moment. The scheduling 
munner affects twice the algorithm: first with respect to 
the input data (computing within the interval [$,-,in, 
and second, related to the initialisation data. LogRecords 
presents the LogSchedullingPackages attribute having 
three option values: daily, weekly, or a [t--, period. 
Thus. the input computing interval of the algorithm must 
be less or equal to LogRecords scheduling interval. In the 
case of a new scheduling period, the initial health values 
must be the last computed values within the previous 
scheduling period. 

5.3: Aspects  of t h e  on-line init ialisation 

Two aspects related to the initialisation are relevant. 

The first refers to the recording of current uvuilubility 
values, and the latter to the usability mode of the system. 
The on-line algorithm needs the last wmputed Aid(ti-1) 
values to calculate the updated values at ti. Four imple- 
mentation solutions are possible namely, (1) appropriate 
current availability attributes of the managed object rep- 
resenting the real DS resource represent computed val- 
ues, (2) a special currentAvailabilityChangeRecord class 
which inherits from the StateChangeEventRecclrd 
records these values, ( 3 )  there is a special currentAvaila- 
bility class inheriting from LogRecord class which 
records only the ( Aid(t,), s I i }  values, and (4) a special 
current availability data base dedicated to these val- 
ues.The first case implies the addition of several at- 
tributes representing Aid($) values. Consequently, the 
MIB components must be slightly completed. 

In the next two solutions, the new classes partially in- 
herit also several constraints related to the mode of the 
record deletion mode and to the scheduling munner fbr 
recording. If the mode is wrup, the link between the com- 
puted health values at ti.1 and the computing step at ti can 
be broken. If the mode is hull at there will be several ti 
(& < ti), the on-line algorithm applies with errors across 
the time interval between t, and ti (halt(t,) and Aid($)). A 
similar aspect appears between stop (periodp) and restart 
(periodp+l) scheduling periods. 

In the fourth case, the Aid(ti) records are independent 
of aspects arising due to the LogRecord class. Moreover, 
Aid($) values are individually recorded for each DS com- 
ponent. Consequently, the managing objects can easily 
evaluate in time the current availability of each compo- 
nent. 

The input data at ti are based on Aid(ti-1). Since the 
registered timing is system-use dependent, we have iden- 
tified three functionul continuity contexts with respect to 
the initialization of the on-line algorithm: (1) the DS is 
continuously used without breaks, ( 2 )  the DS is used pe- 
riodically, and (3) the DS is used intermittently without a 
well defined frequency. Regardless of the context, the 
Aid(ti) values must be computed at correct time stamps. 

If the system continuously runs, the on-line algo- 
rithm allows to easily pass from a computing period (tT) 
to another, since only few data must be stored namely, 
Aid(tT) values, where tT is the length of a considered pe- 
riod. If the event pair (remove, sturt-period) is within the 
same running period of a system, we can compute the un- 
availability time for the intarruptions with repair compo- 
nents. 

The event sturt-period ensures the initialization as 
prescribed in the input data of the on-line algorithm. If the 
system works in these two contexts, the inactivity period 
is not caused by the component. Consequently, this time 
is ignored in computing current values. The start-period 
event for a component must consider the initial values 
corresponding to the values computed at the end of the 
precedent period. 
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6: Using current availability features within 
DSs 

Let us suppose now that we have somewhere current 
availability values as previously introduced. In the gener- 
al case, a managing system may have three h n d s  of views 
on the current availability values of real DS resources, de- 
pending on the period that the managing system keeps 
these values: (1) the last updated vaiues, ( 2 )  a set of val- 
ues within one period, and (3) a set of values across sev- 
eral successive periods. The managing system can use 
these values for different purposes as follows, as suggest- 
ed by different kinds of policies presented in Section 3: 
I .  - to build availability statistics on new DS components; 
2 .  - to update availability statistics on existing DS compo- 

3. - to monitor DS components with respect to guaranteed 

4. - to predict future current availability of a component; 
5. - to establish consistent customer-provider cooperation 

nents; 

threshold values for their availability; 

relations based on the current availa - 
bility values. 

6. - to improve the existing DS configuration; 
7. - to accommodate the polling frequency according to 

the current availability tendency. 
Since the first two cases are straightforward, we con- 

centrate on the remainder. Let us take again the satellite 
channel example, whose uvuilubility guaranteed is A = 
9’3.6. If, for instance. one accepts a deviation of = 2.5, 
the uccepted uvuifubifity becomes 97. I. However, each 
satellite channel presents its own current crvailubiliry at 
run time. Several scenarios could be considered. If the 
channel has a decreasing current uvuilubiliry tendency, 
the management system must simultaneously look for an- 
other channel (prediction) and indicate this aspect to the 
reconfiguration module. If the giwrunteed threshold is 
nearly reached, the polling freqwncy must be updated, in 
order to capture the current cwlution more frequently. 
Once the cirrepted uvczilubility is reached, the managing 
system must lock the administrativestate of the corre- 
sponding managed object, avoiding an in-rhuin degrudu- 
tion. 

Let us suppose now that a high priority upplirution 
needs a host node within a network. Knowing the Aid($) 
values, a manager can choose between the most available 
nodes (ullotufion uspects). Even further, if a system com- 

several constraints expressed by requested Aidti) values, 
the allocation can be performed by taking into account 
current avuilubility vulues offered by potential customers 
and other policies presented in Section 3. 

Finally, if no requested services are detected, but sev- 
eral DS components have a decreasing current availabili- 
ty, the management systems may decide to reconfigure a 
part of the DS in order to ensure the system survivability. 

ponent needs services of another system component with 

This approach has been implemented in two distinct 
applications. The first one has considered management 
procedures for evaluating the provider health in a hierar- 
chical architecture. The work h a s  been implemented at 
the University of Montreal by using the language Mondel 
in the OSIMIS [ 1.51 environment. The second application 
refers to the variable polling frequency used by managers 
within distributed systems to get current information on 
component states. The optimization of the polling fre- 
quency is based on the operational state and the health 
evaluation. The implementation platform consists of 
SNMP-agents [SI and a SNMP/CMIP-proxy [17]. 

7: Conclusion and future work 

We have presented a way tu evaluate the availability 
of a system component in real-time. We have propused a 
procedure to compute the current availability, and de- 
fined several derived features (currenf uvuihbility ten- 
dency and weighted uveruge Of current uvuilubility) used 
for monitoring system components represented as man- 
aged objects. Different aspects related to a real imple- 
mentation of a computing algorithm according to existing 
real systems are described. Several management issues 
using current measured values are presented. 

A combination of real-time measurements and cer- 
tain refinements of the operational and usage states of a 
managed object allowed us t o  propose different manage- 
ment policies. Based on the relation is-better-thun, that 
we proposed, we have presented various concrete cumbi- 
nations of simple management policies. 

We have considered a single system component at a 
time. We have shown that even in this simple case, the 
QoS management can be enhanced by our approach. The 
algorithm for computing the current availability has been 
fully implemented, 

The next aspect is how these component features may 
be combined within a subsystem having many compo- 
nents which interact. We are currently working on an al- 
gorithm to automatically infer similar properties for 
subsystems composed of several components. 
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